skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Bingbing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The presence of partially filled 4f orbitals of cerium regulates heteroanionic CeHaVIO4to give good infrared nonlinear optical materials with moderate photocurrent response. 
    more » « less
  2. Abstract Birefringent materials are widely used in various advanced optical systems, owing to their vital role in creating and controlling polarized light. Currently, Sn2+‐based compounds containing stereochemically active lone‐pair (SCALP) cations are extensively investigated and considered as one class of promising birefringent materials. To solve the problem of relatively narrow bandgap of Sn2+‐based compounds, alkali metals and multiple halogens are introduced to widen the bandgap during the research. Based on this strategy, four new Sn2+‐based halides, A2Sn2F5Cl and ASnFCl2(A = Rb and Cs), with large birefringence, short ultraviolet (UV) cutoff edge, and wide transparent range are successfully found. The birefringences of A2Sn2F5Cl (A = Rb and Cs) are 0.31 and 0.28 at 532 nm, respectively, which are among the largest in Sn‐based halide family. Remarkably, A2Sn2F5Cl possess relatively shorter UV cutoff edge (<300 nm) and broad infrared (IR) transparent range (up to 16.6 µm), so they can become promising candidates as birefringent materials applied in both UV and IR regions. In addition, a comprehensive analysis on crystal structures and structure–property relationship of metal Sn2+‐based halides is performed to fully understand this family. Therefore, this work provides insights into designing birefringent materials with balanced optical properties. 
    more » « less
  3. Abstract Spin Seebeck effect (SSE) and related spin caloritronics have attracted great interest recently. However, the definition of the SSE coefficient remains to be established, let alone a clean experiment to measure the SSE coefficient in ferromagnetic metals. The concept through a model based on the semi‐classical Botlzmann transport equation has been clarified. The model includes the vital spin‐flip process, which is frequent in metals, and points out that the length scale of SSE is much larger than the spin diffusion length. The model reveals how the spin‐flip process influences the transport equations and provides the simple relationship between the different spin‐flip relaxation times for spin‐up and ‐down electrons, which is very useful to understand the spin transport properties. This understanding allows to redefine the expression of the spin Seebeck coefficient. 
    more » « less